- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004100000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Haddadan, Shahrzad (5)
-
Gao, Jie (3)
-
Xin, Cheng (3)
-
Menghini, Cristina (2)
-
Champagne, Ashley (1)
-
Ramachandran, Sohini (1)
-
Riondato, Matteo (1)
-
Sandstede, Bjorn (1)
-
Uhr, Justin (1)
-
Upfal, Eli (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
David, Carmel (1)
-
Elad, Yom-Tov (1)
-
Liane, Lewin-Eytan (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Haddadan, Shahrzad; Xin, Cheng; Gao, Jie (, International Conference on Machine Learning (ICML 2024))
-
Haddadan, Shahrzad; Xin, Cheng; Gao, Jie (, Proceedings of the 41st International Conference on Machine Learning)
-
Menghini, Cristina; Uhr, Justin; Haddadan, Shahrzad; Champagne, Ashley; Sandstede, Bjorn; Ramachandran, Sohini (, 14th ACM Web Science Conference)
-
Haddadan, Shahrzad; Menghini, Cristina; Riondato, Matteo; Upfal, Eli (, WSDM)Liane, Lewin-Eytan; David, Carmel; Elad, Yom-Tov (Ed.)The topology of the hyperlink graph among pages expressing different opinions may influence the exposure of readers to diverse content. Structural bias may trap a reader in a 'polarized' bubble with no access to other opinions. We model readers' behavior as random walks. A node is in a 'polarized' bubble if the expected length of a random walk from it to a page of different opinion is large. The structural bias of a graph is the sum of the radii of highly-polarized bubbles. We study the problem of decreasing the structural bias through edge insertions. 'Healing' all nodes with high polarized bubble radius is hard to approximate within a logarithmic factor, so we focus on finding the best k edges to insert to maximally reduce the structural bias. We present RePBubLik, an algorithm that leverages a variant of the random walk closeness centrality to select the edges to insert. RePBubLik obtains, under mild conditions, a constant-factor approximation. It reduces the structural bias faster than existing edge-recommendation methods, including some designed to reduce the polarization of a graph.more » « less
An official website of the United States government

Full Text Available